
-1 697 ARCHITECTURE OF iNS SIMULATION DISTRIBUTING PROCESSES 1/1
(U) MARYLAND UdIY COLLEGE PARK SYSTEMS RESEARCH CENTER
V SINNA S1 JAN 87 AFOSR-TR-87-i436 AFOSR-R7-f73

UNCLASSIF1ED F/G 12/6 NU

1 .01 l"L jj

1111 1 40 1112.0

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURiAU Of STANDARDS 1963-A

w W l

U~FILE COei
AFOSR7 R.rt

r)

DArchitecture of MRMS Simulation:
Von Distributing Processes

Velu Sinh. DTIC
Q Systems Research Center EL E CT E

The University of Maryland
College Park, MD 20742 NOV 1 61987

January 1, 1987 S D
4H

Abstract

As described in [31, tjie Mobile Remote Manipulator System Simulator
is based on an interconnected network of heterogenous computers. The
simulation is divided into modules which run concurrently on multiple
computers. Modules are designed so that they perform a specific task
which can be used in a variety of simulations. As each of the" modules is
built, it is necessary to provide a method for intermachine / intermodule
communication. This paper describe. various methods which can be used
for this type of communication, and also describes various standard data
formats which are used to get data from module to module In the MRMS
Simulator.

1 Construction of Modules
A module can be built out of any algorithm which has a well defined input data
stream and output data stream. The location of the module is dependent on
the algorithm: e.g. for mathematically complex tasks, a computer with a FPU
makes an ideal host, while for a graphically intense task, a workstation with
graphics primitives is the host of choice.

To convert an algorithm into a module it is necessary to do the following:

1. Decide on a standard data format for input and output streams .

2. Add stream based i/o.

'This work was supported in part by NSF Grant dS-00108. AFOSR-URI Grant #AFOSR-
87-0073, and by a Design Project Grant from NASA through the Universities Space Research
Association.

'Standard data formats are discussed in the Appendix.

4 , -.w-'e~t for public rlease- i

SEURITY CLASSI CATN -OF THIS PAGE

REPORT DOCUMENTATION PAGE OormApproed

la. REPORT SE CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. M f ORM IZATIN jEPgRIjNU.qN

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

8a. NAME OF FUNDING/SPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) <7 "7

(".

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK ~ WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT

IFROM TO

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

- 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT, 0 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

itff§ &

(

3. Add network interface for streams.

4. Add exception handling into stream based system.

Once these steps are complete, the module can be integrated into the simulation
system. One factor which should not be overlooked when building a system
of this sort is how and where a set of modules which run a simulation are
started, and how they give their output. In the MRMS case this was quite well
defined, the simulation was started from the Iris 2400 workstation, the results
were shown on the Iris 2400 workstation, and the simulation parameters were
controlled from the workstation. Such a circular arrangement is possible as the
Iris is serving two distinct functions in the simulation: It is acting as both the
control panel for the MRMS system, as well as the MRMS itself.

2 Structure of the Algorithm

As mentioned above, it is necessary to add four basic steps to turn an algo-
rithm into a module. However, these steps can be more easily added to some
algorithms than others. It is easier to convert an algorithm into a module if the
following guidelines are followed while implementing the algorithm:

" Write the algorithm so that it expects input and output from data streams.

Do not query the 'user for input in the module, use a well defined and
compact input/output format, preferably conforming to one of the stan-
dards in the appendix. Allow for sidin and stdout to be specified as the
input/output source.

" Write the algorithm with a *forever loop, which allows for the function
of the algorithm to be called over and over again. Allow for the algorithm
to terminate elegantly upon the proper termination sequence.

" Provide a mechanism to reset the algorithm in mid-input. This should
return the algorithm to a pristine state so that a dataset with higher
priority can be processed. Also allow the various parameters (constants) OTIC

which the algorithm uses to be modified using an appropriate command COPY
sequence. ro

" Use the C programming language wherever possible. This will allow the
algorithm to be moved from machine to machine most easily. If you arecession yor
using a Lisp Machine, please refer to 121 for more information. S GRA&I

If the above guidelines are followed the task of converting the algorithm into aIC TAB CQ
module will be simplified. innounced Q

In order to assist users in preparing modules, a sample module written in CItIti@ati o
.

is given in the appendix.
By
Distribution/

2 Availablllty Codes

Avail and/or
Dist ISpecialWV' I o

3 Inter-Process / Inter-Machine Communica-
tion

As most of the modules to date have been written under UNIX 2 heavy use has
been made of the UNIX IPC (Inter-Process Communication) facilities[I]. One
advantage of using these facilities is that under UNIX no distinction needs to be
made between local processes and remote processes, where a process runs (or in
this case, which machine a module is located on) can be completely transparent
to the user. As a matter of fact this can even allow for a simple fault tolerant
mechanism to be built into the system - if a host goes down, then the modules
which were running on that host can be started up automatically on other hosts.
Of course, the performance of the system will go do in situations like this, but
the user will not need to be aware of such things.

When first implementing the IPC code in the simulation modules, there
was a very tight link between the IPC routines and the modules themselves.

0 However, upon further study is was decided that each module should be started
up along with a sister process which handles all of its outgoing communication
routing. Each process is then started up in one of two ways: Manually, from a
terminal, mostly for testing purposes, or automatically by the Simulation Server
which runs on each machine.

Currently all modules are started manually, however, a simulation server has
been implemented, and is currently being tested.

3.1 Simulation Server

Each host participating in the simulation has a 'simulation server.' The simu-
lation server listens to the network for connections from other systems, or from
other modules on the same system. Upon receiving a connection, the server
routes the data to the appropriate module. If the module is not currently being
executed, the server starts the module.

A module sends its output to another module through its sister IPC process.
A sister process is used because it allows the modules to be linked and tested
most easily: When all of the modules reside on one host they are started up

* with simple UNIX pipes between them. The sister processes interact with the
modules through pipes also, but have the capability for opening connections to
simulation servers on other hosts.

It is very important to note that there is a fixed direction in which all
messages low. Once modules are linked together, messages Bow only in one
direction. At the moment, it is not possible to dynamically add a new module
to the simulation - if a module may even possibly be used, it should be specified
when the simulation is started. The module can be turned on or off by use of a
command such as the ones described in the next section.

2UNIX is a trodemuk of AT&T Del Laboratories.

3

L MI11111wfil llBo

Hardware ISoftware Architecture of the MRMS Simulation

Aigortflm Collison Avoidance Display FjortM

Module ~Subsystem dl

=4~gn~~mMIControl Panel ~Ag
~'C on trol SystemSuste

McieA Machine B

Ethernet

MRMS Architecture: Simulation [VS:021887a]

* Figure 1: Hardware anid Software Architecture of Simulation System

4

Figure 1 shows both the hardware and software architecture of the simulation
system.

4 Appendix A: Simulation Data Formats

There are many different kinds of data which are currently sent from module
to module, and there will be many more. The following data format provides a
standard which can be easily extended as new data formats are needed. Each
message has the following mandatory fields:

Sender Recipient Command [Variables]

Each of SENDER, RECIPIENT, and COMMAND is an integer between 0 and
216 - 1. Every module is assigned a unique number.

4.1 Initialization Data

The first message sent to any module is a reset instruction. This instruction
has the following format:

0 0 0 Xmin Ynin Znin Xmax Ynax Zaax

The two leading seros imply that it is a broadcast message (from 0, or the
simulation controller, to 0, which is a pseudonym for everyone), and the third
sero implies that it is a reset command.

The reset command has six mandatory variables, which define the two cor-
ners (FLL and the RUR corners) of a box which contains the simulation universe.

If a module ever receives an initialization command, the algorithm should
be reset to its pristine state.

4.2 Operational Data

The following data formats are used when sending operating commands and
the appropriate data through the system. In the table below the Sender and
Recipient fields are omitted, only the Command and variable fields are given.

N.B. The command numbers are specific only to a module, though for ease
of programming it may be simplest to assign unique numbers to each command,
regardless of module. The commands below apply solely to the display module.

1 ViewX VievY VievZ TovardeX TovardsY TovardsZ
2 10V
10 9asePo. Basefot Jntl Jnt2 Jnt$
11 ObsNus ObseflX ObsaflY ObsFflZ ObsRturX ObsRurY ObsRurZ
12 ObjectNumber ObJX ObJY ObJZ
13 Obe ect.NuaberTo.Attach.VievpointTo

b5

6h

5 Appendix B: Sample Module

The following is the code for a simple linear interpolator used in lieu of a control
system in the original (circa May 86) MRMS demonstration.

#ifndef lint
static char mccoidE] "4C)smooth.c U of Md *SRC* VS 21-May-1986';
Sendif
*include (stdio .h
*include "mrms.h"

Sdef ins ME CONTROL-S.YS /*Control Sys Module Number./

/* This module takes the place of a control system by performing simple
*linear interpolation between specified positions of the MRMS.

* Velu Sinha

main()

float V[6J;
float ov(S];
float dl. d2;
int flag;
mnt X;
f loat sipn, step;
float diff;
mnt From, To. Command;
mnt havept-O;

while(scanl("i %d id".&From. &To, &Command) M

*Read From, To. and Command fields...

if(To && To I- MI){

*If the message is not for us, and is not 0 (the reset message).
then
*rebroadcast it.

printf ("% d Ud U . From, To. Command);

6

whileC((x-getcharO)! !"\n') putchar(x);
continue;

aGo and wait for the next message ...

} I closing the if(To && ... statement '

*OK. well, this message IS for us ...

switch(Command){

*Let us figure out what command it is...

RESET...cse0

d1-d2v0uv1u[2mv[3u.,(4] 0.0;
flag - 0;
havept - 0;

*Pass the message on...

ME1. DISPLAY. MOVEJ4RS,
dl. d2. v[0J, flag. v[l). v[21. v[3]. v[4J);

break;

*This one means that we interpolate...

case 10:

U1, AM2. kv[O], Aflag, &v[11. kv[2J, kvL3J.
hi (4]);

eVo don't know how to handle this, yet ...

If (f lag 1)
printf (Od UA d 0. 0. 0. -1 0. 0. 0. 0.\n",

exit (); NE, DISPLAY. MOVEJ4RNS);

) .if S/

7

*Save a copy for interpolation purposes....

for(x-O; x<5; x++)
ov~xlinv~xJ;

*If I have nothing to interpolate with, then pass this on.

if(C havept){
printf("%d %d %d %f %f %f %d %f %f %f %f\n".

ME. DISPLAY. MOVEI4RMS.
dl, d2, v[o], flag. v[1], v[2], v[31.

v[(4J);
havept-l;
break;

/* i

eOtherwise, Look for the first value which has changed, that in the
value
*to be interpolated.

for~x-0; x(5; x++)
if(abs (vlx] - ov~x]) >.02) break;

If this happens (ie. if this new point is far enough away to ak
*a difference ...

if(x 1- 5){
diff - dx] ov~x];
if (z 0)

step -1.0;
else

*step 0.2;

signinl;

if(diff < 0) step*-(sign - (-M);

e .. calculate interval, and interpolate ...

for(. signeev~x3<.signev~x]; ovEIx) step)

print! ("%d %d %d %f %f %f %d %f %f %f

%f\nn.

ME, DISPLAY, MOVE-.RMS.
dl, d2. ov[OJ. flag. ov[1J.
ov[2J, ov[3J, ov[4J);

} I switch '
} I while *

}/* main */

6 Appendix CQ Users guide to starting a dis-
tributed simulation

To start a MRMS s.m~ulation, login to the Iris, and issue a command of the
following format...

simulate MACH (data source) [MACH module ...]I I doply.prog
or

roh MACH data source I roh MACH module I rob MACH module I dsply-.prog

Where MACH is any one of the valid hoitnames, and data source is a pro-
gram which creates the data (can be of the form cat Nieftome if the data is
precomputed and stored in a file). Module is the location of the module in the
filesystem of the specified host. There may be any number of MACH module
statements.

References

[1] Samuel J. Leffler, Robert S. Fabry, and William N. Joy. A O.BSD Inter-
process Communication Primer. Computer Systems Research Group, De-
partment of EE & CS, University of California, Berkeley, December 1985.
Available on ENEEVAX in /usr/doc/ipc.

[21 Velu Sinha. Architecture of MRMS Simulation: Lisp Machine Interface. In-
* telligent Servosystem Laboratory, Systems Resp~.rch Center, The University

of Maryland, College Park, MD, 1987. In Propgration.

131 Vein Sinha. The Mobile Resmote Manipula tor Systemn Simulator. Intelli-
gent Servosystem Laboratory, Systems Research Center, The University of
Maryland, College Park, MD, December 1986.

9

K 4

.4

4

4

I

I /
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

